Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sci Rep ; 13(1): 6917, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: covidwho-2303702

RESUMEN

In this work, the COVID-19 pandemic burden in Ukraine is investigated retrospectively using the excess mortality measures during 2020-2021. In particular, the epidemic impact on the Ukrainian population is studied via the standardized both all-cause and cause-specific mortality scores before and during the epidemic. The excess mortality counts during the pandemic were predicted based on historic data using parametric and nonparametric modeling and then compared with the actual reported counts to quantify the excess. The corresponding standardized mortality P-score metrics were also compared with the neighboring countries. In summary, there were three "waves" of excess all-cause mortality in Ukraine in December 2020, April 2021 and November 2021 with excess of 32%, 43% and 83% above the expected mortality. Each new "wave" of the all-cause mortality was higher than the previous one and the mortality "peaks" corresponded in time to three "waves" of lab-confirmed COVID-19 mortality. The lab-confirmed COVID-19 mortality constituted 9% to 24% of the all-cause mortality during those three peak months. Overall, the mortality trends in Ukraine over time were similar to neighboring countries where vaccination coverage was similar to that in Ukraine. For cause-specific mortality, the excess observed was due to pneumonia as well as circulatory system disease categories that peaked at the same times as the all-cause and lab-confirmed COVID-19 mortality, which was expected. The pneumonias as well as circulatory system disease categories constituted the majority of all cases during those peak times. The seasonality in mortality due to the infectious and parasitic disease category became less pronounced during the pandemic. While the reported numbers were always relatively low, alcohol-related mortality also declined during the pandemic.


Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Neumonía , Humanos , COVID-19/epidemiología , Pandemias , Ucrania/epidemiología , Estudios Retrospectivos , Mortalidad
2.
Commun Med (Lond) ; 1: 31, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1860413

RESUMEN

Background: Non-pharmaceutical interventions (NPIs) have been implemented worldwide to curb COVID-19 spread. Belarus is a rare case of a country with a relatively modern healthcare system, where highly limited NPIs have been enacted. Thus, investigation of Belarusian COVID-19 dynamics is essential for the local and global assessment of the impact of NPI strategies. Methods: We integrate genomic epidemiology and surveillance methods to investigate the spread of SARS-CoV-2 in Belarus in 2020. We utilize phylodynamics, phylogeography, and probabilistic bias inference to study the virus import and export routes, the dynamics of the effective reproduction number, and the incidence of SARS-CoV-2 infection. Results: Here we show that the estimated cumulative number of infections by June 2020 exceeds the confirmed case number by a factor of ~4 (95% confidence interval (2; 9)). Intra-country SARS-CoV-2 genomic diversity originates from at least 18 introductions from different regions, with a high proportion of regional transmissions. Phylodynamic analysis indicates a moderate reduction of the effective reproductive number after the introduction of limited NPIs, but its magnitude is lower than for developed countries with large-scale NPIs. On the other hand, the effective reproduction number estimate is comparable with that for the neighboring Ukraine, where NPIs were broader. Conclusions: The example of Belarus demonstrates how countries with relatively low outward population mobility continue to be integral parts of the global epidemiological environment. Comparison of the effective reproduction number dynamics for Belarus and other countries reveals the effect of different NPI strategies but also emphasizes the role of regional Eastern European sociodemographic factors in the virus spread.

4.
Sci Rep ; 12(1): 5475, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: covidwho-1768851

RESUMEN

Public health intervention to contain the ongoing COVID-19 pandemic significantly differed by country since the SARS-CoV-2 spread varied regionally in time and in scale. Since vaccinations were not available until the end of 2020 non-pharmaceutical interventions (NPIs) remained the only strategies to mitigate the pandemic spread at that time. Belarus in Europe is one of a few countries with a high Human Development Index where no lockdowns have ever been implemented and only limited NPIs have taken place for a period of time. Therefore, the Belarusian case was evaluated and compared in terms of the mortality burden. Since the COVID-19 mortality was low, the excess overall mortality was studied for Belarus. Since no overall mortality data have been reported past June 2020 the analysis was complemented by the study of Google Trends funeral-related search queries up until August 2021. Depending on the model, the Belarusian mortality for June of 2020 was 29 to 39% higher than otherwise expected with the corresponding estimated excess death was from 2953 to 3690 while the reported COVID-19 mortality for June 2020 was only 157 cases. The Belarusian excess mortality for June 2020 was higher than for all neighboring countries with an excess of 5% for Poland, 5% for Ukraine, 8% for Russia, 11% for Lithuania and 11% for Latvia. The relationship between Google Trends and mortality time series was studied using Granger's test and the results were statistically significant. The results for Google Trends searches did vary by key phrase with the largest excess of 138% for April 2020 and 148% for September 2020 was observed for a key phrase "coffin", while the largest excess of 218% for January 2021 was observed for "funeral services". In summary, there are indications of the excess overall mortality in Belarus, which is larger than the reported COVID-19-related mortality.


Asunto(s)
COVID-19 , Pandemias , COVID-19/epidemiología , Europa (Continente) , Humanos , República de Belarús/epidemiología , SARS-CoV-2
5.
PLoS Negl Trop Dis ; 16(3): e0010228, 2022 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1731580

RESUMEN

Colombia announced the first case of severe acute respiratory syndrome coronavirus 2 on March 6, 2020. Since then, the country has reported a total of 5,002,387 cases and 127,258 deaths as of October 31, 2021. The aggressive transmission dynamics of SARS-CoV-2 motivate an investigation of COVID-19 at the national and regional levels in Colombia. We utilize the case incidence and mortality data to estimate the transmission potential and generate short-term forecasts of the COVID-19 pandemic to inform the public health policies using previously validated mathematical models. The analysis is augmented by the examination of geographic heterogeneity of COVID-19 at the departmental level along with the investigation of mobility and social media trends. Overall, the national and regional reproduction numbers show sustained disease transmission during the early phase of the pandemic, exhibiting sub-exponential growth dynamics. Whereas the most recent estimates of reproduction number indicate disease containment, with Rt<1.0 as of October 31, 2021. On the forecasting front, the sub-epidemic model performs best at capturing the 30-day ahead COVID-19 trajectory compared to the Richards and generalized logistic growth model. Nevertheless, the spatial variability in the incidence rate patterns across different departments can be grouped into four distinct clusters. As the case incidence surged in July 2020, an increase in mobility patterns was also observed. On the contrary, a spike in the number of tweets indicating the stay-at-home orders was observed in November 2020 when the case incidence had already plateaued, indicating the pandemic fatigue in the country.


Asunto(s)
COVID-19 , Pandemias , COVID-19/epidemiología , Colombia/epidemiología , Predicción , Humanos , SARS-CoV-2
6.
Nucleic Acids Res ; 49(17): e102, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: covidwho-1594917

RESUMEN

Rapidly evolving RNA viruses continuously produce minority haplotypes that can become dominant if they are drug-resistant or can better evade the immune system. Therefore, early detection and identification of minority viral haplotypes may help to promptly adjust the patient's treatment plan preventing potential disease complications. Minority haplotypes can be identified using next-generation sequencing, but sequencing noise hinders accurate identification. The elimination of sequencing noise is a non-trivial task that still remains open. Here we propose CliqueSNV based on extracting pairs of statistically linked mutations from noisy reads. This effectively reduces sequencing noise and enables identifying minority haplotypes with the frequency below the sequencing error rate. We comparatively assess the performance of CliqueSNV using an in vitro mixture of nine haplotypes that were derived from the mutation profile of an existing HIV patient. We show that CliqueSNV can accurately assemble viral haplotypes with frequencies as low as 0.1% and maintains consistent performance across short and long bases sequencing platforms.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Infecciones por Virus ARN/diagnóstico , Virus ARN/genética , COVID-19/diagnóstico , COVID-19/virología , Frecuencia de los Genes , Infecciones por VIH/diagnóstico , Infecciones por VIH/virología , VIH-1/genética , Humanos , Mutación , Polimorfismo de Nucleótido Simple , Infecciones por Virus ARN/virología , Reproducibilidad de los Resultados , SARS-CoV-2/genética , Sensibilidad y Especificidad
7.
J Comput Biol ; 28(11): 1130-1141, 2021 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1483350

RESUMEN

This article presents a novel scalable character-based phylogeny algorithm for dense viral sequencing data called SPHERE (Scalable PHylogEny with REcurrent mutations). The algorithm is based on an evolutionary model where recurrent mutations are allowed, but backward mutations are prohibited. The algorithm creates rooted character-based phylogeny trees, wherein all leaves and internal nodes are labeled by observed taxa. We show that SPHERE phylogeny is more stable than Nextstrain's, and that it accurately infers known transmission links from the early pandemic. SPHERE is a fast algorithm that can process >200,000 sequences in <2 hours, which offers a compact phylogenetic visualization of Global Initiative on Sharing All Influenza Data (GISAID).


Asunto(s)
Mutación , Filogenia , SARS-CoV-2/genética , Algoritmos , COVID-19/transmisión , COVID-19/virología , Bases de Datos Genéticas , Humanos
8.
J Comput Biol ; 28(11): 1113-1129, 2021 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1483349

RESUMEN

The availability of millions of SARS-CoV-2 (Severe Acute Respiratory Syndrome-Coronavirus-2) sequences in public databases such as GISAID (Global Initiative on Sharing All Influenza Data) and EMBL-EBI (European Molecular Biology Laboratory-European Bioinformatics Institute) (the United Kingdom) allows a detailed study of the evolution, genomic diversity, and dynamics of a virus such as never before. Here, we identify novel variants and subtypes of SARS-CoV-2 by clustering sequences in adapting methods originally designed for haplotyping intrahost viral populations. We asses our results using clustering entropy-the first time it has been used in this context. Our clustering approach reaches lower entropies compared with other methods, and we are able to boost this even further through gap filling and Monte Carlo-based entropy minimization. Moreover, our method clearly identifies the well-known Alpha variant in the U.K. and GISAID data sets, and is also able to detect the much less represented (<1% of the sequences) Beta (South Africa), Epsilon (California), and Gamma and Zeta (Brazil) variants in the GISAID data set. Finally, we show that each variant identified has high selective fitness, based on the growth rate of its cluster over time. This demonstrates that our clustering approach is a viable alternative for detecting even rare subtypes in very large data sets.


Asunto(s)
Análisis por Conglomerados , Biología Computacional/métodos , Brasil , Bases de Datos Genéticas , Entropía , Humanos , Método de Montecarlo , Sudáfrica , Reino Unido , Estados Unidos
9.
Infect Genet Evol ; 95: 105087, 2021 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1442480

RESUMEN

The novel coronavirus SARS-CoV-2 was first detected in China in December 2019 and has rapidly spread around the globe. The World Health Organization declared COVID-19 a pandemic in March 2020 just three months after the introduction of the virus. Individual nations have implemented and enforced a variety of social distancing interventions to slow the virus spread, that had different degrees of success. Understanding the role of non-pharmaceutical interventions (NPIs) on COVID-19 transmission in different settings is highly important. While most such studies have focused on China, neighboring Asian counties, Western Europe, and North America, there is a scarcity of studies for Eastern Europe. The aim of this epidemiological study is to fill this gap by analyzing the characteristics of the first months of the epidemic in Ukraine using agent-based modelling and phylodynamics. Specifically, first we studied the dynamics of COVID-19 incidence and mortality and explored the impact of epidemic NPIs. Our stochastic model suggests, that even a small delay of weeks could have increased the number of cases by up to 50%, with the potential to overwhelm hospital systems. Second, the genomic data analysis suggests that there have been multiple introductions of SARS-CoV-2 into Ukraine during the early stages of the epidemic. Our findings support the conclusion that the implemented travel restrictions may have had limited impact on the epidemic spread. Third, the basic reproduction number for the epidemic that has been estimated independently from case counts data and from genomic data suggest sustained intra-country transmissions.


Asunto(s)
COVID-19/epidemiología , COVID-19/transmisión , Genoma Viral , Modelos Estadísticos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , COVID-19/virología , China/epidemiología , Monitoreo Epidemiológico , Europa (Continente)/epidemiología , Humanos , Incidencia , América del Norte/epidemiología , Filogenia , Distanciamiento Físico , SARS-CoV-2/clasificación , SARS-CoV-2/aislamiento & purificación , Viaje/estadística & datos numéricos , Ucrania/epidemiología
10.
PLoS One ; 16(7): e0254826, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1319519

RESUMEN

Mexico has experienced one of the highest COVID-19 mortality rates in the world. A delayed implementation of social distancing interventions in late March 2020 and a phased reopening of the country in June 2020 has facilitated sustained disease transmission in the region. In this study we systematically generate and compare 30-day ahead forecasts using previously validated growth models based on mortality trends from the Institute for Health Metrics and Evaluation for Mexico and Mexico City in near real-time. Moreover, we estimate reproduction numbers for SARS-CoV-2 based on the methods that rely on genomic data as well as case incidence data. Subsequently, functional data analysis techniques are utilized to analyze the shapes of COVID-19 growth rate curves at the state level to characterize the spatiotemporal transmission patterns of SARS-CoV-2. The early estimates of the reproduction number for Mexico were estimated between Rt ~1.1-1.3 from the genomic and case incidence data. Moreover, the mean estimate of Rt has fluctuated around ~1.0 from late July till end of September 2020. The spatial analysis characterizes the state-level dynamics of COVID-19 into four groups with distinct epidemic trajectories based on epidemic growth rates. Our results show that the sequential mortality forecasts from the GLM and Richards model predict a downward trend in the number of deaths for all thirteen forecast periods for Mexico and Mexico City. However, the sub-epidemic and IHME models perform better predicting a more realistic stable trajectory of COVID-19 mortality trends for the last three forecast periods (09/21-10/21, 09/28-10/27, 09/28-10/27) for Mexico and Mexico City. Our findings indicate that phenomenological models are useful tools for short-term epidemic forecasting albeit forecasts need to be interpreted with caution given the dynamic implementation and lifting of social distancing measures.


Asunto(s)
COVID-19/epidemiología , COVID-19/transmisión , Predicción , Pandemias/estadística & datos numéricos , Humanos , México/epidemiología , Modelos Estadísticos , Factores Socioeconómicos
11.
PLoS One ; 16(2): e0247182, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1088768

RESUMEN

Since its discovery in the Hubei province of China, the global spread of the novel coronavirus SARS-CoV-2 has resulted in millions of COVID-19 cases and hundreds of thousands of deaths. The spread throughout Asia, Europe, and the Americas has presented one of the greatest infectious disease threats in recent history and has tested the capacity of global health infrastructures. Since no effective vaccine is available, isolation techniques to prevent infection such as home quarantine and social distancing while in public have remained the cornerstone of public health interventions. While government and health officials were charged with implementing stay-at-home strategies, many of which had little guidance as to the consequences of how quickly to begin them. Moreover, as the local epidemic curves have been flattened, the same officials must wrestle with when to ease or cease such restrictions as to not impose economic turmoil. To evaluate the effects of quarantine strategies during the initial epidemic, an agent based modeling framework was created to take into account local spread based on geographic and population data with a corresponding interactive desktop and web-based application. Using the state of Massachusetts in the United States of America, we have illustrated the consequences of implementing quarantines at different time points after the initial seeding of the state with COVID-19 cases. Furthermore, we suggest that this application can be adapted to other states, small countries, or regions within a country to provide decision makers with critical information necessary to best protect human health.


Asunto(s)
COVID-19/epidemiología , COVID-19/transmisión , Modelos Estadísticos , Transmisión de Enfermedad Infecciosa/prevención & control , Transmisión de Enfermedad Infecciosa/estadística & datos numéricos , Humanos , Massachusetts/epidemiología , Pandemias , Distanciamiento Físico , Salud Pública/métodos , Cuarentena/economía , Cuarentena/psicología , SARS-CoV-2/aislamiento & purificación , Procesos Estocásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA